
Proceedings of the New Trends in Information Technology (NTIT-2017).

The University of Jordan, Amman, Jordan. 25-27 April 2017.

Salah Hussein, Abdel Salam Sayyad
Joint Master Program in Software Engineering (JMSE)

Faculty of Engineering and Technology

Birzeit University

Birzeit, Palestine

E-mail: salah.hussein@gmail.com, asayyad@birzeit.edu

Abstract

Performance monitoring is one of the most important aspects to ensure that software systems operate well. Performance
administrators struggle to precisely monitor huge and complex systems with software and hardware components. Achieving
this task in a simple and precise way is the goal of this research. To achieve this goal, we need to jump over internal system
complexity, and must automate an intensive monitoring process. A simple and accurate approach was developed to monitor
systems, all hardware and software components are managed as one abstract box, and then front-end services can be
monitored by terms from end to end. The implemented case studies show and confirm that we can emulate manual
performance monitoring by simulating the role of real subscriber exactly without any systematic restriction, hence complex
algorithms, processes for status prediction and faults diagnosis aren’t farther needed in live system monitoring.

Keywords: performance; monitoring; end-to-end.

1. INTRODUCTION

Performance monitoring in different disciplines is

one of the most important roles, and this

importance refers to the assessment of objectives

and goals. Therefore, business leaders continuously

look to monitor main performance indicators,

especially ones that affect the top goals.

Performance monitoring in software engineering is

one of the most important aspects, because of the

vast involvement of software in all aspects

nowadays. The performance of software systems

affects the goals of other systems directly or

indirectly due to high dependency among them.

Performance approaches [1] are divided into early

and late cycles, model-based and measurement-

based approaches, respectively. On top of those

two approaches, we can monitor performance

continuously or periodically in discrete periods,

may be also in case of acceptance tests or validity

test. Alive and continuous monitoring for

performance is essential issue for service providers

to insure service availability and perceived quality

for their customers.

When we talk about software system, we mean

huge and complex systems that are based on huge

hardware systems such as scalable clusters, load

balancers, shared storage, and redundant

infrastructure. To monitor a certain business

service we may need to monitor many

infrastructure services that are interdependent

within certain hierarchy, which means very

complex algorithms to diagnosis service status at

certain moment by using raised faults [13][14][15].

The tested algorithm to investigate the status of

such that complex system was through looking

from outside these systems, exactly like a client

who interacts from end to end, which abstract

internal complexity by looking from the end front

as a subscriber. This approach can be followed

periodically and continuously through suitable and

dedicated simulator to interact system or service

and then record its status.

We have done two empirical case studies based on

this approach for more than two years, with better

results than traditional approach [1]. After

comparing results with data of standard fault

managers and measurement systems for known

network management systems (NMS), we found

that end-to-end performance monitoring is more

accurate, it covers all scenarios that are impossible

to be covered by traditional approach [1].

The first case study was on mobile radio service

status, the end-to-end methodology was applied,

and a manual procedure was followed to check

service status from its front end APIs. The results

were compared with NMS deducted results,

especially from fault manager, measurements, and

also from customer complaints, new method

introduced more precise and comprehensive results,

but with tiny side effects on the running resources.

The second case study was on short message

system center (SMSC), it is a very huge system

End to End Performance Monitoring Approach

based on a very complex infrastructure and

redundant platforms, a dedicated simulator was

built to interact with system services from its top

interfaces similar to usual subscribers. Collected

results reflected a very clear figure about service

availability and efficiency for more than one year,

these end-to-end results of integrated systems were

more comprehensive and realistic than results of

synthesis measurements for these systems.

2. RELATED WORK

2.1 Early-cycle (Model-Based) approach

The “Software Performance Engineering”

definition is the umbrella of model-based approach,

it was pioneered under the name of SPE by Smith

[3] [4] (see also [5] for a survey of modelling

approaches), which creates performance models

early in the development cycle, and then uses

quantitative results from these models to adjust its

architecture and design to meet purpose of

performance requirements.

SPE is a common approach, it is used as predefined

model in system design and architecture, it is

integrated with measurement-model to fetch data

that form adequate indicators about performance, it

is usually applied as fault manager subsystem, or

software and hardware counters that can be

collected and aggregated later as good performance

indicators, these counters can be combined with

other measurements from outside systems to

present obvious figure about system performance.

SPE approach is essential, but it is more general, it

can’t draw enough figure about behaviour of

certain system from inside that system only, and in

general it needs human enrolment for monitoring,

so it should be integrated in a precise way with

other approach from outside the system.

2.2 Late-cycle (Measurement-Based)
approach

The commonest approach is purely measurement-

based approach, it applies testing, diagnosis and

tuning late in the development cycle, when the

system under development can be run and

measured (see, e.g. [6], [7], [8], and [9]).

The SPE definition is also the umbrella of

measurement-based approach, it is mostly

integrated with model-based approach to predefine

and implement certain dynamic indicators that can

be collected and integrated with measurements.

This approach is the most common, but it is

designed to be based on model-based approach to

be comprehensive, hence model-based is not

enough as mentioned above.

Acceptance tests usually depend on both

approaches in general, an example of this was

mentioned in [2], and research goal was to facilitate

acceptance test and performance test, which

involved Load Generators that could be deployed

for testing systems such as an SMSC or MMSC.

The Load Generators enable us to measure how

well these servers can handle large numbers of

concurrent users, scalability issues, such as

response time and processing bottlenecks.

Value-Added Services (VAS) and Content

Platforms were carried out within a group of same

name at Tele2 AB in Kista, Stockholm. That group

was responsible for network design, capacity

planning, dimensioning, Acceptance testing (ATP

test), and introduces new functionality in Tele2s

VAS platforms.

Acceptance testing was performed on new devices

(servers and other network components) in order to

verify its capacity and performance that guaranteed

by their manufactures. Every platform has a

guaranteed upper bound performance (based on

license of buyer), it can be measured by different

approaches. For instance for Short Message Service

Center (SMSC) platforms, the measurement was

based on the maximum number of SMS messages

processed per second (SMS/sec), for Multimedia

Messaging Service Center (MMSC) platforms, the

metric was the maximum number of MMS

messages processed per second (MMS/sec), and for

WAP Gateways it was the maximum number of

WAP Transactions Per Second (TPS).

The above related [2] work was the nearest to this

research, but it was designed to be run for discrete

time periods at acceptance test stage only and

wasn’t designed for continuous monitoring.

3. CASE STUDIES

3.1 Approach: End-to-End monitoring

In this article, case studies are based on the second

approach, measurement-based, but with main

deference in the way of fetching these

measurements about systems from outside system

itself, using its front end interfaces, to treat as real

client, it exceeds complex diagnosis for deep

dependencies and ambiguous faults, and it monitors

simply by test and fetching measurements all the

time based on predefined pattern. For future work,

a dedicated APIs can be designed and included, it

will be more suitable for solid monitoring by

transients the full life cycle and checks all system

processes.

New methodology simulates manual work from the

top of service interfaces with continuous pattern to

be exactly like human approach, it processes inputs

and store results into organized database to be

reported in well-designed reports. Yes, this

methodology seems trivial and simple to be

implemented, but it is very risky in practical mode;

this risk appears as side effects on service ability to

be continuous all the time, hence case study is

important to pilot these issues and confirm method

validity.

3.2 First case: Monitoring Mobile Radio
Services

One of the most important and essential services in

our live nowadays is the mobile services that based

on wireless radio signals, all people need this

service all the time, any interruption on this service

means hazard and big risk, many of the institutions

and enterprises are fully depend on that service in

different sectors like rescue, emergency, etc.

Therefore performance monitoring for such service

is very important, and it needs very accurate

techniques to notify early and take proper action.

The mentioned approaches [1] are used in the

performance monitoring process, early and late

approaches, and usually human resource is

essential aspect of this process to monitor and

follow up model-based outputs, and also to analyze

measurements-based outcomes for each day.

Although human resource is essential, but tools and

instruments are more important to help in

monitoring process and to efficient the work.

Engineers monitor alarm viewers all the time and

also can analyze measurements outcome after each

collection period to investigate service status. In

Ericsson environment, Fault Manager Subsystem is

used to raise alarms via monitoring dashboard, each

alarm has predefined severity level with detailed

problem description, NOC engineers receive

alarms, and based on its severity and defined

description, they decide the new situation for the

service, and mostly diagnosis the situation by

manual check through dedicated APIs, level of the

service should be announced and documented for

reporting issues. On the other hand, measurements

based on predefined and predesigned software

counters, results are fetched periodically by

performance engineers though special systems,

these counters, in Ericsson environment, check

service status and count up in case of down service

result and then aggregate results as number of

down times per quarter (15 minutes) to be used as

good performance indicators about service in late-

cycle approach.

Above methodology needs huge efforts to analyze

and diagnosis service situation based on raised

faults, and some time it’s impossible to fit faults’

set into known scenario to decide service situation

automatically, hence manual check is mandatory

and very hard at the same time, especially in case

of many cells degradation due certain incident like

storms. Late-cycle approach (measurements) needs

long time to be collected and fetched, so this

methodology is poor and needs significant

development as shown in the above section.

This case study was designed to monitor more than

450 sites in Palestine, Wataniya Mobile operates a

mobile network on basis of Ericsson platform

technology. Developed process fetches status for

all sites through certain APIs on main controllers,

every 5 seconds, and then process results to analyze

radio service status for all sites and record outages

of affected sites into log file, and finally logs are

archived in a database, as shown in Figure 1.

Fig. 1: E2E Performance Monitoring System

All these processes are implemented based on

java platform, java packages are developed for

all needed jobs like fetching service status on

all sites, analyzing status with a very fast speed

in milliseconds to save high monitoring

accuracy, and recording logs into system files,

all these tasks are done by java process, which

is run over Unix OS on the application server.

After archiving outages’ data of mobile radio

services into well-organized database, more

than 80000 records are stored within one year,

hence rich and well-defined reports can be

fetched and presented, as shown in Figure 2,

and also it can be correlated with other related

data (e.g. revenue) to conclude significant

analysis result, as shown in Figure 3.

Application Server

Store results in
log files

Status
Records

Controllers Process results and
analyze service

status for each site

Check Status of Radio
Service every 5 sec

Log files

DB

Extract & Translate
and load into DB

Radio Site 1 Radio Site 2 Radio Site n

By comparing new approach with old one we

found that there were many interruptions

detected on service after using new approach.

A brief summary of differences are listed as

shown in Figure 4. On the other hand there

were some of side effects after applying new

approach, but really it was very lite and doesn’t

cause any major effect on system, even though

that systems are loaded, the worst side effect

due to running processes of new approach was

CPU utilization increment on controllers

platform by (2-4%) at most which means very

normal situation.

Fig. 2: Outage data of mobile service

Fig. 3: Revenue loss due to outage

Fig. 4: Outage times detected by new approach

3.3 Second case: Monitoring SMS Services

SMS service is one of most important services in

mobile systems, yes after the advanced generations

of mobile systems, we faced less attraction for this

service, but really it is still forms the based

platform and prerequisite service for other main

services that used intensively nowadays like MCN,

MMS, MNN, USSD. SMS business services

usually forms more than 10% of total revenue

which means a very big concern from top

management, so performance monitoring is very

important issue to keep high service availability

and high level of quality.

SMSC is the system that is responsible about SMS

delivery from sender to receiver, sender and

receiver can be simulated via mobile station or

computer application, SMSC is integrated with

mobile switching center to be accessible through

mobile station, and also it can be accessed directly

form computer application by using SMPP protocol

which is usually used to send and receive SMS.

Traditional approaches are usually used to monitor

performance level of SMS service, wherein

engineers monitor faults and alarms via Fault

Handler Subsystem which is part of SMSC system

and also they can follow other performance issues

by using statistics of measurement subsystem.

These two subsystems are main components for

SMSC systems and both of them forms model and

measurement based approaches respectively.

SMSC systems are based on very complex

infrastructure and platforms to keep its services

available, scalable, and reliable all the time, so

SMS service depends on many other infrastructure

services that should be running well to get valid

SMS service, therefore while monitoring, many

deferent types of alarms and faults among deferent

platforms that may be raised, so engineers shall

know enough about all scenarios that may interrupt

the service, it is a very hard job, and sometime it is

being uncertain until receiving complaints from

customers.

Furthermore, SMS service availability depends on

mobile radio and core backbones, so it is

impossible to evaluate service status based on

model or measurements approaches by monitoring

faults, alarms, and statistics only as shown in

Figure 5. End-to-end testing is a simpler approach

to monitor service.

Fig. 5: SMSC system node architecture

To test SMS service from end to end we need

similar simulator to check service availably exactly

like manual test, so SMPP application have been

developed based on java platform to handle SMS

message via SMSC over SMPP protocol on IP

backbone.

Two main test scenarios are implemented, first one

was used to check SMSC system availability with

all its related systems and components to check

complete process life cycle on the system including

delivery and charging process, and the second

scenario was used to check round trip delivery time

over radio network to certain mobile station, and

then reply back from that mobile station.

To implement first test scenario, SMPP client

application is essential to send test message to

SMSC, every 30 seconds, by using SMPP

protocol over TCP, SMSC was configured to

receive that message and resend it back to the

sender, after sending message from application

side, it waits up to 30 seconds until receiving the

response message from the SMSC side, if response

isn’t received, SMSC will be assumed as

unavailable, outage period will be documented, and

continue in test message every 30 seconds.

Transient SMS must practise all subsystems and

related systems on SMSC (including charging),

which insures that all processes and components

are running well, as shown in Figure 6. Radio

accessibility is not checked in this scenario because

it is already checked in the other scenario.

Fig. 6: SMSC monitoring first scenario

In the second scenario, message delivery time will

be measured for its round trip from-to mobile

station over radio network access. Other instance of

the same SMPP client application can be used

again, but with deferent message routing criteria,

this time message will be forwarded to certain

mobile station over radio access network, and then

the same message will be replied back

automatically to the client application by using

dedicated real time application on that mobile

station, as shown in Figure 7.

SMPP client application will repeat it by sending

test message to the SMSC every 2 minutes, and

then waits up to 30 seconds to receive the response

from mobile station, else it will record an outage in

logs. While waiting, it continues in sending test

messages. Client application records spent delivery

time into organized data logs on system file, this

test has been run for more than one year and

already tested in real interruption occurrence,

delivery time results are being recorded in logs, and

also loaded into database very well, hence it can be

correlated easily with other valuable data to

analyze incidents and low performance issues.

Figure 8 illustrate a sample of statistical data.

Fig. 7: SMSC monitoring second scenario

By using this approach, we can confirm that

performance of short message service is monitored

all the time from end to end, and so no need to go

deep inside complex system and infrastructure to

analyze effect of certain alarms on the quality of

service, and we will not wait until receiving

complaints from customers to take action which

means high loss.

Fig. 8: Sample of SMS data

4. DISCUSSION OF RESULTS
This approach is mostly mentioned in the context

of manual procedure only, but no one has tried to

automate this approach within certain accuracy. In

general, researchers implicitly assume that this

approach is for manual resources only, and they

can’t imagine that it could be automated. This may

due to theoretical assumptions like bad side effects

on the resources of the systems. After applying

these two case studies, we proved that this

approach is practical, precise and can be used with

most critical systems with a very light side effects

on system’s resources. On the contrary, it provides

an accurate monitoring for the services all the time

which must offer real figure about trends of system

status all the time.

Therefore practitioners can use this approach by

developing dedicated applications to provide real

performance monitoring for their systems and

services all the time, and also they may use

developed tools and applications that are based on

this approach to be as an auxiliary tool for human

resources.

And in parallel, researchers and students can use

this contribution to build and include an integrated

model architecture, based on the performance

early-cycle approach, to offer more suitable

interfaces and protocols for this new approach.

5. THREATS TO VALIDITY
Internal validity makes sure that relationship

between treatment and outcome is a causal

relationship, and then the result of the study can be

generalized outside the scope of our study.

Instrumentation validity considers the effect caused

by the artefacts used for experiment execution,

such as data collection forms, document to be

inspected in an inspection experiment, and so

SMPP connection between application server and

SMSC server forms instrumentation internal threat

and it was mitigated by human monitoring and by

considering it in the check list in case of analysis

process for certain degradation or interruption, and

also TCP connection between application server

and radio controllers forms instrumentation threat

and it was mitigated by automatic health check and

notification to alert in case of any interruption.

External validity makes sure that relationship

between cause and effect is a causal relationship,

and it is not a result of a factor of which we have

no control or have not measured. And confirms that

the treatment causes the outcome. Instruction of

setting and treatments considers the effect of not

having the experimental setting or material

representative of, therefore selection of service or

function that should be handled via simulator forms

“Instruction of setting and treatments” external

threat, and it was mitigated by interacting with

certain service that absolutely will pass the

complete life cycle through system components and

processes to insure that all parts and process of the

system are running well, e.g. asking SMSC to send

message to certain mobile station means that all

processes with all related systems will be executed

like routing, charging, radio signalling, and data

delivery.

Construct validity concerns with the relation

between theory and observation when the

relationship between cause and effect is causal. It

must make sure that the treatment reflects the

construct of the cause well and the outcome reflects

the construct of the effect well. Inadequate

preoperational explication of constructs conceders

that constructs are not sufficiently defined, before

they are translated into measures or treatments,

hence design of accuracy level for monitoring

forms a design construction threat, and it was

mitigated by using very high accurate level of

design, especially at first stage of monitoring until

make tuning for optimum check period, e.g. check

radio service availability every 5 seconds, and test

message was being sent every 30 seconds in the

first stage.

Conclusion validity makes sure that there is a

statistical relationship between treatment and

outcome, and then we can draw a correct

conclusion about relations between the treatment

and the outcome of an experiment. Power of a

statistical test is the ability of the test to reveal a

true pattern in the data, so low statistical power

forms conclusion threat, and it was mitigated by

using very intensive data sampling to draw an

accurate trends, e.g. radio service status was being

checked every 5 seconds, and also test message

was being sent every 5 seconds in the first stage

before it was tuned to 30 seconds to check

availability and 120 seconds to check delivery time.

6. CONCLUSION
This paper introduced a simple and practical

methodology to monitor systems among deferent

complex components of software and hardware

systems, all these aspects are wrapped and

encapsulated as one abstract box and matched by

terms from end to end.

After completing both case studies on SMS center

and on mobile radio service for more than one year,

it is verified that the approach is practical and

accurate, and by comparing it with most applied

approaches, we found that it is more accurate and

simpler than common ones.

The implemented case studies show and confirm

that we can simulate manual performance

monitoring exactly like real human behaviour

without any systematical restriction, hence complex

algorithms and processes for status diagnosis aren’t

farther needed in live system monitoring.

While this approach was mostly mentioned in

context of manual procedure only, and no one has

tried to automate this approach within certain

accuracy, and researchers assume implicitly that

this approach is for manual resources only, and

they can’t imagine that it could be automated, this

may refer to theoretical assumptions like bad side

effects on the resources of the systems. While all

the above issues, we applied these two case studies,

and approved that this approach is practical, precise

and can be used with most critical systems with a

very lite side effects on system’s resources, and on

the contrary it provides an accurate monitory for

the services all the time which must offer real

figure about trends of system status all the times

precisely.

Therefore practitioners can use this approach by

developing dedicated applications to provide real

performance monitoring for their systems and

services all the time, and also they may use

developed tools and applications that are based on

this approach to be as an auxiliary tools for human

resources.

As for future work, researchers and students can

build an integrated model architecture, based on

performance early-cycle approach, to offer more

suitable interfaces and protocols for this new

approach.

7. ACKNOWLEDGMENT
We would like to thank Wataniya Mobile Company

in Palestine, a member of Ooredoo Group, for this

opportunity to perform the case study and for their

support and helpfulness.

8. GLOSARY
API Application Programming Interface

ATP Acceptance Test Procedure

CPU Central Processing Unit

E2E End to End

MCN Missed Call Notification

MMS Multimedia Messaging Service

MMSC Multimedia Messaging Service Center

MNN My New Number, as VAS service

NMS Network Management System

NOC Network Operations Center

OS Operating System

SPE Software Performance Engineering

SMPP Short Message Peer to Peer

SMS Short Messaging Service

SMSC Short Messaging Service Center

TCP Transmission Control Protocol

USSD Unstructured Supplementary Service Data

VAS Value Added Services

WAP Wireless Access Protocol

9. REFERENCES
[1] Woodside, Murray, Greg Franks, and Dorina C. Petriu.

"The future of software performance engineering." Future
of Software Engineering, 2007. FOSE'07. IEEE, 2007.

[2] Mahdavi, Adrian. Value Added Services and Content
Platforms. Diss. Royal Institute of Technology,
Stockholm, Sweden, 2003.

[3] C.U. Smith. Performance Engineering of Software
Systems. Addison Wesley, 1990.

[4] C.U. Smith, “Software Performance Engineering”,
Encyclopedia of Software Engineering, Wiley, 2002.

[5] S. Balsamo, A. DiMarco, P. Inverardi, and M. Simeoni,
“Model-based Performance Prediction in Software
Development”, IEEE Trans. on Software Eng., vol. 30,
2004, pp. 295-310.

[6] M. Arlitt, D. Krishnamurthy, J. Rolia, “Characterizing
the Scalability of a Large Web-based Shopping System'',
ACM Trans. on Internet Technology, v 1, 2001, pp. 44-
69.

[7] A. Avritzer, J. Kondek, D. Liu, and E. J. Weyuker,
"Software performance testing based on workload
characterization," in Proc. WOSP’2002, Rome, , pp. 17-
24.

[8] S. Barber, “Creating Effective Load Models for
Performance Testing with Incomplete Empirical Data”,
in Proc. 6th IEEE Int. Workshop on Web Site Evolution,
2004, pp. 51-59.

[9] S. Barber, “Beyond performance testing”, parts 1-14,
IBM DeveloperWorks, Rational Technical Library, 2004,
www-
128.ibm.com/developerworks/rational/library/4169.html.

[10] Krogmann, Klaus, et al. "Improved feedback for
architectural performance prediction using software
cartography visualizations." International Conference on
the Quality of Software Architectures. Springer Berlin
Heidelberg, 2009.

[11] Mabrouk, Nebil Ben, Nikolaos Georgantas, and Valerie
Issarny. "A semantic end-to-end QoS model for dynamic
service oriented environments." Proceedings of the 2009
ICSE Workshop on Principles of Engineering Service
Oriented Systems. IEEE Computer Society, 2009.

[12] Junxian Huang, Feng Qian, Alexandre Gerber, Z.
Morley Mao, Subhabrata Sen, and Oliver
Spatscheck, " A Close Examination of Performance
and Power Characteristics of 4G LTE Networks,".
University of Michigan, AT&T Labs - Research.K.
Elissa, “Title of paper if known,” unpublished.

[13] A. Korodi and T. L. Dragomir, "Mobile fault detection and
diagnosis module for automatic systems," 2007
Mediterranean Conference on Control & Automation,
Athens, 2007, pp. 1-6.doi: 10.1109/MED.2007.4433942

[14] C. M. Vong, P. K. Wong and W. F. Ip, "A New
Framework of Simultaneous-Fault Diagnosis Using
Pairwise Probabilistic Multi-Label Classification for Time-
Dependent Patterns," in IEEE Transactions on Industrial
Electronics, vol. 60, no. 8, pp. 3372-3385, Aug. 2013.

[15] L. Hou and N. W. Bergmann, "Novel Industrial Wireless
Sensor Networks for Machine Condition Monitoring and
Fault Diagnosis," in IEEE Transactions on Instrumentation
and Measurement, vol. 61, no. 10, pp. 2787-2798, Oct.
2012.

