
Proceedings of the New Trends in Information Technology (NTIT-2017).
The University of Jordan, Amman, Jordan. 25-27 April 2017.

Hamad Alsawalqah1, Bashar Al-Shboul1, Yazan Alshamaileh1, Hossam Faris1, Ibrahim
Aljarah1, Ahmad Abadleh2

1The University of Jordan
Amman, Jordan

2Mutah University
Al-Karak, Jordan

{h.sawalqah, b.shboul, y.shamaileh, hossam.faris, i.aljarah} @ju.edu.jo, ahmad_a@mutah.edu.jo

Abstract

During the last two decades, Software Product Line approach has been applied by many companies due to its concepts of
commonality and variability to provide product variety in a cost-effective manner. Yet, the effect of different amounts of
component commonality on the perceived benefits from adopting SPL approach is not well understood. One reason is the
absence of appropriate methods and useful analytical measures (i.e. indices) to assess the software product family based on
commonality concept. This paper proposes an analytical tool, i.e. Software Component Commonality Index, to measure the
amount of component commonality among a family of software products. In principle, it measures the amount of component
sharing in the software product family based on the components of each product, their implementation, and connections. A
software product line example from digital watch embedded software domain is used to demonstrate the application of software
component commonality index.

Keywords: component; software product line; commonality

1. INTRODUCTION

An increasing number of companies are adopting the
Software Product Line (SPL) approach to improve
customization while shortening time to market and
reducing costs. SPL is a current software
development paradigm that applies the concept of
product families to the development of software
products and software–intensive systems [1]. SPL
approach applies systematic reuse by exploiting
commonalities within a set of products while
maintaining the distinctiveness among those
products.

The benefits of commonality, e.g. reduction of
development costs, reduction of time to market, and
enhancement of quality, are widely known by
software companies; however, commonality’s
quantification methods, and correlation to
commonality benefits, are yet not fully understood.
Therefore, when developing new products poor
understanding of commonality will produce poor
implementation. Consequently, companies lose
some of commonality benefits rather than taking full
advantage of it. A reason is the absence of solid
indices tailored to assess the software product family
based on commonality concept. As a result, no real
attempts are made to correlate component
commonality to some of related quantifiable benefits
(e.g. the reduction of development cost). The
development of such indices is a prerequisite to

understand the relationships between commonality
and its benefits.

Although a number of indices to measure
component commonality have been proposed during
the past decade [2, 3, 4, 5, 6, 7], none of these indices
consider the component's connections (i.e.
Interfaces) with other components while measuring
component commonality. Component’s interfaces
can result in very significant and painful differences
due to the complexity and cost of reusing that
component in other products. Such a factor should
be considered when assessing the commonality of
the component.

Another limitation of these indices is that they do not
consider the desired level of variety in a product
family, penalizing it most of the time. This means
that such indices can reach their perfect value (the
maximum commonality) just when all the
parameters are common between all the components
in all the products in the family regardless of
whether these components are adding desired
variety (required by different market needs) to the
product family or not.

This paper is an attempt to address these
shortcomings in the existing software commonality
indices. One purpose of this study is to introduce the
first metric to assess the impact of each component
on the overall level of commonality and diversity in
a software product family on a 0-1 scale, based on
the components in each product, their

A Proposed Index for Evaluating Component
Commonality for Software Product Family

implementation (i.e. level of functionality and/or
quality), connections, cost, and the allowed diversity
in the family. The proposed metric, Software
Component Commonality Index (SCCI), is a
modified version of the Comprehensive Metric for
Commonality (CMC) [11]. The second purpose of
this study is to demonstrate how commonality
indices can provide useful information that they can
provide for software product family design and
redesign.

The remainder of this paper is organized as follows.
Section 2 discusses the related work. Section 3
presents the proposed index. A demonstration of the
computation and usage of the proposed index on an
illustrative case study is presented in Section 4,
while Section 5 concludes the paper with a summary
and an outlook on future research direction.

2. RELATED WORKS

In reviewing SPL’s literature, it is noticeable that
only few preliminary studies defining suitable
commonality indices have been conducted [2, 3, 4,
5, 6, 13]. Some of them measure commonality at the
feature level [6, 8, 13] while others measure
commonality at the component level [9]. In [3], a
research plan addressing the implications of
commonality and reuse on the cost of software
maintenance was proposed.

In another attempt, Peterson [5], three commonality
parameters have been introduced with the required
theoretical rigor for their ideas. However, none of
these attempts consider the differences among
features or components while measuring
commonality. The other works which have been
proposed in software reuse [8, 9], are limited in
evaluating the concept of commonality in SPL.
These indices are rather oriented towards traditional
reuse. Consequently, understanding and evaluating
the implications of component commonality
decision become very difficult.

As an attempt to address the shortcomings of the
aforementioned indices, the authors in [7] analyzed
and adopted some analytical tools developed in
manufacturing domain in order to measure the
commonality in SPL. They stated that the main
limitation of the analyzed indices is that they do not
fully consider the desired variability in the product
family. In other words, these indices promote
commonality among all components, including the
ones that should remain product specific or variant
to differentiate products in the family, because those
components add desired variety to the product
family. Their study suggested that reusing

commonality indices from the manufacturing
domain to assess the commonality of products in
SPLs is sensible and for some indices, modifications
on these indices and their computation process are
required in order to use them is SPLs

3. SOFTWARE COMPONENT
COMONALITY INDEX
(SCCI)

The proposed index is a modified version of the
CMC which was proposed by Thevenot and Simpson
[11] to assess the impact of each component on the
overall level of commonality and diversity in the
product family on a 0-1 scale. CMC evaluates the
commonality based on the components in each
product, their size, geometry, material,
manufacturing process, assembly, cost, and the
allowed diversity in the family. The CMC is defined
as following:

ܥܯܥ =
 ݊×(ܥ

௫ − ×(ܥ ∏ ௫݂
ସ
௫ୀଵ

ୀଵ

 ݊×൫ܥ
௫ − ܥ

൯× ැ ௫݂
௫ସ

௫ୀଵ

ୀଵ

Table 1 describes the parameters used in the CMC. A
detailed process for calculating this index is shown
in [11]. The main advantage of CMC is that it
penalizes only the components that should ideally be
common in a product family such that the desired
variety added by differentiating components is not
penalized.

Software components have different characteristics
from manufactured components. For example, we do
not need to consider the quantity of software
components since we develop a shared component
once and we reuse it. Moreover, each manufactured
component, even the shared component, must be
assembled again or purchased. Accordingly, there is
no difference in cost if that component is common or
unique one, except for some cost reduction due to
factors like quantity discount and process cost
(commonality in supply and process). Due to such
differences, the computation of commonality among
family of software product is unlike the
manufacturing domain. Furthermore, as we
explained above, CMC considers size/ geometry,
process, material, fastening and assembly factors to
assess the impact of the component on the family
commonality, such factors do not exist in the case of
software components. Based on the characteristics of
software components analyzed in [12], this study
defines two factors which can assess the degree of
commonality of a software component:

Table 1: Parameters used in the CMC

Parameter Description
P The total number of components.

݊
the number of products in the product
family that have component i.

ଵ݂

The ratio of the greatest number of
products that share component i with
identical size and shape to the number
products that have component i (n୧).

fଶ୧

The ratio of the greatest number of
products that share component i with
identical material to the number products
that have component i (n୧).

fଷ୧

The ratio of the greatest number of
products that share component i with
identical manufacturing process to the
number products that have component i
(n୧)

ସ݂

The ratio of the greatest number of
products that share component i with
identical assembly and fastening
schemes to the number products that have
component i (n୧)

ଵ݂
௫

The ratio of the greatest number of
products that share component i with
identical size and shape to the greatest
possible products that could have shared
component i with identical size and shape
schemes

ଶ݂
௫

The ratio of the greatest number of
products that share component i with
identical material to the greatest possible
products that could have shared
component i with identical materials

ଷ݂
௫

The ratio of the greatest number of
products that share component i with
identical manufacturing process to the
greatest possible products that could have
shared component i with identical
manufacturing process.

ସ݂
௫

The ratio of the greatest number of
products that share component i with
identical assembly and fastening
schemes to the greatest possible products
that could have shared component i with
identical assembly and fastening
schemes.

 ܥ
the current total cost for component i:
ܥ = ∑ ܥ

ୀଵ

ܥ

The minimum total cost for component i
(obtained when component i is common
between all the products having
component i): ܥ

 = ∑ ܥ

ୀଵ

ܥ
௫

The maximum total component cost
(obtained when the component is
variant in each of the products having
component i): ܥ

௫ = ∑ ܥ
௫

ୀଵ

A. Function / Quality variation

Component with the same functionality can be
implemented in different ways to provide different
level of that functionality or to provide same

functionality with different quality levels. For
example, a component A can have a low resource
consumption implementation which can process 10
Transactions per Second as required by market
segment. A high resource consumption
implementation which can process 100 Transaction
per Second for high end market segment B.

B. Interaction-Based Variation

In contrast with the manufacturing components,
where the compatibility of a shared component with
the rest of a design is usually obvious and the effort
for integrating such a component with the overall
design is usually small. Component connections
with other component can result in very significant
and painful differences due to the complexity and
cost of reusing that component in other products,
such factor should be considered when we assess the
commonality of the component.

According to this analysis, we define the SCCI as
follows:

ܫܥܥܵ =
 ݊×(ܥ

௫ − ×(ܥ ∏ ௫݂
ଶ
௫ୀଵ

ୀଵ

 ݊×൫ܥ
௫ − ܥ

൯× ැ ௫݂
௫ଶ

௫ୀଵ

ୀଵ

where fଵ୧ is the ratio of the greatest number of
products that share component i with identical level
of functionality/quality to the number products that
have component i, (݊). fଶ୧ is the ratio of the greatest
number of products that share component i with
identical connection with the number of the products
that have component i, (݊). ଵ݂

௫ is the ratio of the
greatest number of products that share component i
with identical level of functionality/quality to the
greatest possible products that could have shared
component i with identical level of
functionality/quality. fଶ୧

୫ୟ୶ is the ratio of the greatest
number of products that share component i with
identical connection to the greatest possible products
that could have shared component i with identical
connection. Other parameters will remain the same
as CMC. For the cost factor, this represent the initial
cost and total cost of ownership (including
integration cost) and it can be decomposed onto
details cost factor based on the available level of
information.

For a successful product line portfolio, each product
within a product line should be different from the
other products in ways that are meaningful to the
customers in each relevant market segment. Thus,
and similar to CMC, the mean advantage of SCCI is

it penalizes only the components that should ideally
be common in a product family such that the desired
variety added by differentiating components is not
penalized. An example on the computation and
usage of SCCI is presented in the next section.

4. DEMONESTRATION ON AN
ILLUSTRATIVE CASE
STUDY

This section presents an overview of our defined
software product line example from digital watch
embedded software domain to show how to compute
the value of the SCCI for a given software product
family. This example focuses at the level of
architecture and related components. Figure 1
illustrates the reference architecture for digital watch
family and its sub components for time and alarm
components. Table 2 shows an example product
family derived from the reference architecture and
consists of three products (P1, P2 and P3). The table
also describes the products in terms of components.
For cost estimates of components, we made simple
cost estimation. Specifically, we assumed
component development cost (in the context of P1
or in the family context) as a scoring function on a
10-100 scale based on the functionality and
interfaces of each component, and the cost for P2
and P3 can be reuse cost if the component is
common (i.e., organizing and retrieving components
cost) or cost to adapt the component from the context
of P1 (redevelop it for the intended product context,
purchase it, and so on).

Table 3 shows sample data required for the
computation of the SCCI index. It is important to
know that SCCI index classifies components based
on their cost factor value and the ௫݂ factors similar
to CMC index. The total cost to produce a
component i, ܥ , ranges from C୧

୫୧୬ to C୧
୫ୟ୶ with

C୧
୫୧୬ being the lowest cost achievable (best

commonality) and C୧
୫ୟ୶ being the most expensive

cost possible (worst commonality). For example,
Time-Date Manager is common among the three
products, thus we have cost to develop it as a
common component (52), cost to reuse it in P2 (5)
and cost to reuse it in P3 (5). Thus ܥ for this
component is 62 which is equal to ܥ

 as it deems
common between the three products. The ܥ

௫ is
156 which is the case when Time-Date Manager is
variant in each of the three products. The type of
each component (differentiating component, non-
differentiating component) influences the value of
SCCI. For example, display controller is common
between P1 and P2 but vary in P3, we consider it as
non-differentiating component since it does not
provide unique functionality nor seen by the
customers. According to the sample data presented
in Table 3, the value of SCCI would be 0.48.

The benefits of commonality indices come from the
information that they can provide during product
family benchmarking and product family design and
redesign. This can assist the designers to make a
better decision regarding which design strategy to
use among the available alternatives, and focus on
components that derive the most the commonality.
For example, we can assess the impact of two
different modifications on the current commonality
level for family design shown in Table 2 in order to
maximize the SCCI value:

First modification: make notification common
between P1 and P2:ܥ= 65+ 24+ 5 = 94, ଵ݂= 2/3,
therefore, the new SCCI value is 0.5.

Second modification: make notification common
between P2 and P3: ܥ= 20+ 24+ 5 = 49, ଵ݂= 2/3,

ଶ݂= 3/3, therefore, the new SCCI value is 0.69. This
can be explained by the big reduction in the value of
C୧.

Table 2: Digital Watch product line example

 Product Family

Component P1 Cost P2 Cost P3 Cost

Display controller V 67 V 43 V 38

Time-Date Manager C 52 C 5 C 5

Notification V 65 V 24 V 20

Sound controller - - - - U 51

Light controller V 28 V 16 - -

Note: C: common component; V: variant component; U: unique component, -: doesn't exist in the product

Fig.1: Digital Watch family reference architecture

Table 3: Input data for the computation of SCCI

Component Product Differentiating
Functionality

level
Connection ࢌ ࢌ ࢌ

ࢌ ࢞ࢇ
 ࢞ࢇ

 ࢞ࢇ

Display
Controller

P1
None

1 4
3 2/3 2/3 3/3 3/3 148 70 110 P2 1 4

P3 2 7

Time Date
Manager

P1
None

1 8
3 3/3 3/3 3/3 3/3 156 62 62 P2 1 8

P3 1 8

Audio
Controller

P3 Yes 1 2 1 1/1 1/1 1/1 1/1 51 51 51

Notification
P1

None
1 5

3 1/3 2/3 3/3 3/3 109 75 109 P2 2 5

P3 3 6

Light
Controller

P1
Yes

1 2
2 1/2 2/2 1/2 2/2 44 26 33

P2 2 2

As we can see, the SCCI offer useful information
about the impact of the two modifications on the
overall commonality, thus, the designer can choose
the second modification as long as it deems
consistent with the design constraints, such as the
interoperability among components.

In general, the usage of the commonality indices
varies based on the strategy of the company and the

level of available information on the components [7,
11]. Depending on that, the most relevant index or
indices can be chosen. As a consequence of
proposing the SCCI, the recommendations for the
usage of the commonality indices presented in [7,
11] can be supplemented as shown in Table 4.

Proceedings of the New Trends in Information Technology (NTIT-2017).
The University of Jordan, Amman, Jordan. 25-27 April 2017.

Table 4: Target commonality indices based on company strategy

Criteria DCI TCCI CI ۱(܋)۱۷܁ ܍܋܍ܑܘ Ccost ۱۱۷܁

Strategy

 Focus on the number of common
components

√ √ √ √

 Focus on the cost of component √ √ √

 Focus on non-differentiating
components

 √

 Focus on in the variation of
components

 √

Available
information

 Number of products √ √ √ √ √ √ √

 List of components for each
product

√ √ √ √ √ √ √

 Components costs √ √ √

 Variation parameters
(function/quality-based, Interaction-
based)

 √

5. CONCLUSION

This paper proposed an analytical tool to assess the
effectiveness of a given software product family
design by measuring the amount of component
commonality among a family’s products. The
proposed index, SCCI, is a modified version of the
comprehensive metric for commonality to evaluate
the design of a product family on 0-1 scale based on
the components of each product, their
implementation and connections. The SCCI was
proposed due to the differences between
manufacturing and software components, such as
cost of developing common component and the cost
for reusing that component, different component
implementations, and connections. This research
shows how the SCCI can be used for product family
redesign through an example application. The use of
the SCCI provides useful information on the
redesign of a product family (assessment and
comparison of the different design strategies of a
product family, which components to redesign, and
how to redesign them). This information would help
in fast identification of those components that
influence the commonality the most. SCCI is
analytically feasible against the limited information
indicative of early design (even if this information
represents rough estimates). Such index can mark
the starting point of the design of new families of
products and the redesign of existing families. The
scale of the problem presented in the paper is rather
limited and simple. The main limitation of the SCCI
is that it does not take component variability into
account; hence it cannot tell how increasing

commonality can affect market variability. For
future work, we propose further refinement and
validation of the SCCI after applying it on real SPLs
cases.

6. REFERENCES

[1] Pohl, K., G. Böckle, and F. Van Der Linden, Software
product line engineering: foundations, principles, and
techniques. 2005: Springer.

[2] Berger, C., H. Rendel, and B. Rumpe, Measuring the Ability
to Form a Product Line for a Set of Existing Products, in 4th
Int. VAMOS. 2010.

[3] Capra, E. and C. Francalanci, Cost implications of software
commonality and reuse. in Information Technology: New
Generations, 2006. ITNG 2006. Third International
Conference on. 2006. IEEE.

[4] Her, J. S., J. H. Kim, S. H. Oh, S. Y. Rhew, and S. D. Kim,
A framework for evaluating reusability of core asset in
product line engineering. Information and Software
Technology, 2007. 49(7): p. 740-760.

[5] Peterson, D.R., Economics of software product lines, in
Software Product-Family Engineering. 2004, Springer. p.
381-402.

[6] Peña, J., M. G. Hinchey, A. Ruiz-Cortés, and P. Trinidad,
Building the core architecture of a NASA multiagent system
product line, in Agent-Oriented Software Engineering VII.
2007, Springer. p. 208-224.

[7] Hamad, I. A., and Kang, S. W, Al-Shboul, B., Lee, J.H.
"Measurement and Development Cost Implications of
Component Commonality in Software Product Line
Engineering.", International Journal of Computer &
Information Science, 2013, 14(2): p. 27-44

[8] John, I., J. Knodel, T. Lehner, and D. Muhing, A practical
guide to product line scoping. in Software Product Line
Conference, 2006 10th International. 2006. IEEE.

[9] Poulin, J. S., Measuring software reuse: principles,
practices, and economic models. 1997.

[10] Poulin, J. S. and J. M. Caruso, A reuse indices and return on
investment model. in Software Reusability, 1993.

Proceedings Advances in Software Reuse., Selected
Dissertations from the Second International Workshop on.
1993. IEEE.

[11] Thevenot, H.J. and T.W. Simpson, “Acomprehensive
metric for evaluating component commonality in a product
family,” presented at the ASME 2006 Int. Design Eng.
Tech. Conf. Comput. Inf. Eng. Conf., Philadelphia, PA,
Dissertation No. DETC-2006-DAC-99268.

[12] Simidchieva, B. I., and Osterweil, L. J. Characterizing
process variation (NIER Track). In Proceedings of the 33rd
International Conference on Software Engineering (ICSE
’11) (2011), pp. 836–83.

[13] Alsawalqah, Hamad I., Sungwon Kang, and Jihyun Lee. "A
method to optimize the scope of a software product platform
based on end-user features.", Journal of Systems and
Software 98 (2014): 79-106.

